Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312797, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38288643

RESUMO

The integration of graphene and metal-organic frameworks (MOFs) has numerous implications across various domains, but fabricating such assemblies is often complicated and time-consuming. Herein, a one-step preparation of graphene-MOF assembly is presented by directly impregnating vertical graphene (VG) arrays into the zeolitic imidazolate framework (ZIF) precursors under ambient conditions. This approach can effectively assemble multiple ZIFs, including ZIF-7, ZIF-8, and ZIF-67, resulting in their uniform dispersion on the VG with adjustable sizes and shapes. Hydrogen defects on the VG surface are critical in inducing such high-efficiency ZIF assembly, acting as the reactive sites to interact with the ZIF precursors and facilitate their crystallisation. The versatility of VG-ZIF-67 assembly is further demonstrated by exploring the process of MOF amorphization. Surprisingly, this process leads to an amorphous thin-film coating formed on VG (named VG-IL-amZIF-67), which preserves the short-range molecular bonds of crystalline ZIF-67 while sacrificing the long-range order. Such a unique film-on-graphene architecture maintains the essential characteristics and functionalities of ZIF-67 within a disordered arrangement, making it well-suited for electrocatalysis. In electrochemical oxygen reduction, VG-IL-amZIF-67 exhibits exceptional activity, selectivity, and stability to produce H2 O2 in acid media.

2.
Anal Chem ; 95(35): 13235-13241, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37606014

RESUMO

Since biomolecules change dynamically with tumor evolution and drug treatment, it is necessary to confirm target molecule expression in real time for effective guidance of subsequent chemotherapy treatment. However, current methods to confirm target proteins require complex processing steps and invasive tissue biopsies, limiting their clinical utility for targeted treatment monitoring. Here, CTCs, as a promising liquid biopsy source, were used to molecularly characterize the target protein HER2. To accurately identify CTCs, we specifically proposed a combined molecular and morphological imaging method, rather than using specific biomarker alone or morphology analysis, we identified CTCs as CK19+/CD45-/HE+. On the basis of the accurate identification of CTCs, we further analyzed the target protein HER2 in clinical patients at the single-CTC level. Comparative analysis of the clinical results of patient pathological tissue and paired blood samples showed that CTCs had a heterogeneous HER2 expression at the single-cell level and showed results inconsistent with the immunohistochemistry results in some cases. CTC-based analysis could help clinicians have a more comprehensive understanding of patient target protein expression. We believe that CTC-based target protein studies are of great significance for the precise management of targeted therapy.


Assuntos
Diagnóstico por Imagem , Humanos , Biópsia , Biópsia Líquida
3.
Nanoscale Adv ; 5(16): 4015-4017, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560421

RESUMO

Guest editors Zhaojun Han, Ruopian Fang, Dewei Chu, Da-Wei Wang and Kostya (Ken) Ostrikov, introduce this Nanoscale Advances themed issue on supercapacitors.

4.
ACS Appl Mater Interfaces ; 15(24): 29308-29320, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279402

RESUMO

Ni-rich layered ternary cathodes (i.e., LiNixCoyMzO2, M = Mn or Al, x + y + z = 1 and x ≥ 0.8) are promising candidates for the power supply of portable electronic devices and electric vehicles. However, the relatively high content of Ni4+ in the charged state shortens their lifespan due to inevitable capacity and voltage deteriorations during cycling. Therefore, the dilemma between high output energy and long cycle life needs to be addressed to facilitate more widespread commercialization of Ni-rich cathodes in modern lithium-ion batteries (LIBs). This work presents a facile surface modification approach with defect-rich strontium titanate (SrTiO3-x) coating on a typical Ni-rich cathode: LiNi0.8Co0.15Al0.05O2 (NCA). The defect-rich SrTiO3-x-modified NCA exhibits enhanced electrochemical performance compared to its pristine counterpart. In particular, the optimized sample delivers a high discharge capacity of ∼170 mA h/g after 200 cycles under 1C with capacity retention over 81.1%. The postmortem analysis provides new insight into the improved electrochemical properties which are ascribed to the SrTiO3-x coating layer. This layer appears to not only alleviate the internal resistance growth, from uncontrollable cathode-electrolyte interface evolution, but also acts as a lithium diffusion channel during prolonged cycling. Therefore, this work offers a feasible strategy to improve the electrochemical performance of layered cathodes with high nickel content for next-generation LIBs.

5.
PLoS Genet ; 19(6): e1010814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384781

RESUMO

Meta-diamides (e.g. broflanilide) and isoxazolines (e.g. fluralaner) are novel insecticides that target the resistant to dieldrin (RDL) subunit of insect γ-aminobutyric acid receptors (GABARs). In this study, we used in silico analysis to identify residues that are critical for the interaction between RDL and these insecticides. Substitution of glycine at the third position (G3') in the third transmembrane domain (TMD3) with methionine (G3'M TMD3), which is present in vertebrate GABARs, had the strongest effect on fluralaner binding. This was confirmed by expression of RDL from the rice stem borer, Chilo suppressalis (CsRDL) in oocytes of the African clawed frog, Xenopus laevis, where the G3'MTMD3 mutation almost abolished the antagonistic action of fluralaner. Subsequently, G3'MTMD3 was introduced into the Rdl gene of the fruit fly, Drosophila melanogaster, using the CRISPR/Cas9 system. Larvae of heterozygous lines bearing G3'MTMD3 did not show significant resistance to avermectin, fipronil, broflanilide, and fluralaner. However, larvae homozygous for G3'MTMD3 were highly resistant to broflanilide and fluralaner whilst still being sensitive to fipronil and avermectin. Also, homozygous lines showed severely impaired locomotivity and did not survive to the pupal stage, indicating a significant fitness cost associated with G3'MTMD3. Moreover, the M3'GTMD3 mutation in the mouse Mus musculus α1ß2 GABAR increased sensitivity to fluralaner. Taken together, these results provide convincing in vitro and in vivo evidence for both broflanilide and fluralaner acting on the same amino acid site, as well as insights into potential mechanisms leading to target-site resistance to these insecticides. In addition, our findings could guide further modification of isoxazolines to achieve higher selectivity for the control of insect pests with minimal effects on mammals.


Assuntos
Inseticidas , Receptores de GABA , Animais , Camundongos , Receptores de GABA/genética , Receptores de GABA/metabolismo , Dieldrin , Inseticidas/farmacologia , Inseticidas/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Larva/metabolismo , Mamíferos/metabolismo
7.
EBioMedicine ; 90: 104522, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36933411

RESUMO

BACKGROUNDS: Detecting free cancer cells from ascites and peritoneal lavages is crucial for diagnosing gastric cancer (GC). However, traditional methods are limited for early-stage diagnosis due to their low sensitivity. METHODS: A label-free, rapid, and high-throughput technique was developed for separating cancer cells from ascites and peritoneal lavages using an integrated microfluidic device, taking advantage of dean flow fractionation and deterministic lateral displacement. Afterward, separated cells were analyzed using a microfluidic single-cell trapping array chip (SCTA-chip). In situ immunofluorescence for EpCAM, YAP-1, HER-2, CD45 molecular expressions, and Wright-Giemsa staining were performed for cells in SCTA-chips. At last, YAP1 and HER-2 expression in tissues was analyzed by immunohistochemistry. FINDINGS: Through integrated microfluidic device, cancer cells were successfully separated from simulated peritoneal lavages containing 1/10,000 cancer cells with recovery rate of 84.8% and purity of 72.4%. Afterward, cancer cells were isolated from 12 patients' ascites samples. Cytological examinations showed cancer cells were efficiently enriched with background cells excluded. Afterwards, separated cells from ascites were analyzed by SCTA-chips, and recognized as cancer cells through EpCAM+/CD45- expression and Wright-Giemsa staining. Interestingly, 8 out of 12 ascites samples showed HER-2+ cancer cells. At last, the results through a serial expression analysis showed that YAP1 and HER-2 have discordant expression during metastasis. INTERPRETATION: Microfluidic Chips developed in our study could not only rapidly detect label-free free GC cells in ascites and peritoneal lavages with high-throughput, they could also analyze ascites cancer cells at the single-cell level, improving peritoneal metastasis diagnosis and investigation of therapeutic targets. FUNDING: This research was supported by National Natural Science Foundation of China (22134004, U1908207, 91859111); Natural Science Foundation of Shandong Province of China (ZR2019JQ06); Taishan Scholars Program of Shandong Province tsqn (201909077); Local Science and Technology Development Fund Guided by the Central Government (YDZX20203700002568); Applied Basic Research Program of Liaoning Province (2022020284-JH2/1013).


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Molécula de Adesão da Célula Epitelial , Lavagem Peritoneal , Ascite , Microfluídica , Análise de Célula Única
8.
J Colloid Interface Sci ; 642: 23-28, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001454

RESUMO

The crystalline and electronic structures are two important factors for the design of electrocatalysts. In this work, Co-doped MnO electrocatalysts grown on nickel foam (NF) were prepared by a facile hydrothermal reaction, followed by H2 treatment process. The electrocatalytic performance of MnO was significantly improved after doping with Co and the Co0.1Mn0.9O-NF sample achieved excellent oxygen evolution reaction (OER) performance with low overpotential (370 mV at 10 mA cm-2) and reasonable Tafel slope (85.6 mV dec-1). Significantly, the low work function was obtained in the Co0.1Mn0.9O-NF sample (4.37 eV), which could accelerate the charge transfer process of the OER activity. The excellent OER performance of the Co0.1Mn0.9O-NF sample is also attributed to the rich active sites, which improved electrical conductivity and enlarged electrochemical surface areas.

9.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36727675

RESUMO

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

10.
Nanoscale Adv ; 5(3): 615-626, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756532

RESUMO

To achieve a zero-carbon-emission society, it is essential to increase the use of clean and renewable energy. Yet, renewable energy resources present constraints in terms of geographical locations and limited time intervals for energy generation. Therefore, there is a surging demand for developing high-performance energy storage systems (ESSs) to effectively store the energy during the peak time and use the energy during the trough period. To this end, supercapacitors hold great promise as short-term ESSs for rapid power recovery or frequency regulation to improve the quality and reliability of power supply. In particular, the electrical double layer capacitor (EDLC) which offers long and stable cycle retention, high power densities, and fast charge/discharge characteristics with a moderate operating voltage window, is a suitable candidate. Yet, for implementation of the EDLC in ESSs, further research effort is required in terms of increasing the operating voltage and energy densities while maintaining the long-term cycle stability and power densities which are desirable aspects for ESS operation. Here, we examine the advances in EDLC research to achieve a high operating voltage window along with high energy densities, covering from materials and electrolytes to long-term device perspectives for next-generation supercapacitor-based ESSs.

12.
Pestic Biochem Physiol ; 188: 105281, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464336

RESUMO

RNAi has shown great potential in controlling pests and pathogens, and dsRNA-based pesticides have been used in different ways. Due to off-target effects, the transmission pathways and possible impacts of dsRNA on non-target organisms after release should be researched. Here, we tested pathways of dsRNA transmission through the rice-hopper-spider food chain and their efficiency for triggering RNAi. The results revealed five new pathways by which plants transfer dsRNA into the environment through the food chain. We found that ingestion of the tissues or guttation droplets of treated plant could trigger both targeted and off-target RNAi both in consumers and predators. Ingestion of consumer hoppers could also result in localized RNAi in the midguts of the predator spiders. Trace amounts of dsRNA were detected in plant root excretions and in hopper honeydew. Cutting the root tips dramatically increased the levels of dsRNA in root excretions. Host shifting experiments proved that hoppers could transfer a trace amount of dsRNA via vomit. With specially designed dsRNAs, we showed that dsRNA sharing matching sequences of 29 bp or 32 bp in length with non-target genes could trigger off-target RNAi, but that dsRNA sharing 13 bp matching sequences could not. We conclude that field-released pesticidal dsRNA could be transmitted via the hydrophilic transport system in plants, and that this may pose a safety risk to non-target animal consumers that are closely related to target pests. Rational use of pesticidal dsRNAs should involve careful consideration of dsRNA design to manage the biosafety risk.


Assuntos
Inseticidas , Oryza , Praguicidas , Animais , Inseticidas/toxicidade , RNA de Cadeia Dupla , Interferência de RNA
13.
Nanoscale ; 14(42): 15669-15678, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36227160

RESUMO

The development of hybrid sorbent/catalysts for carbon capture and conversion to chemical fuels involves several material and engineering design considerations. Herein, a metal-organic framework (MOF), known as Mg-CUK-1, is loaded with Ru and Ni nanoparticles and assessed as a hybrid material for the sequential capture and conversion of carbon dioxide (CO2) to methane (CH4). Low nanocatalyst loadings led to enhanced overall performance by preserving more CO2 uptake within the Mg-CUK-1 sorbent. Low temperature CO2 desorption from Mg-CUK-1 facilitated complete CO2 release and subsequent conversion to CH4. The influence of oxygen exposure on catalyst performance was assessed, with Ru-loaded Mg-CUK-1 exhibiting oxygen tolerance through sustained CH4 generation of 1.40 mmol g-1 over ten cycles. In contrast, Ni-loaded Mg-CUK-1 was unable to retain initial catalytic performance, reflected in an 11.4% decrease in CH4 generation over ten cycles. When combined, 0.3Ru2.7Ni Mg-CUK-1 yielded comparable overall performance to 3Ru Mg-CUK-1, indicating that Ru aids the re-reduction of NiO to Ni after O2 exposure. By combining multiple catalyst species within one hybrid sorbent/catalyst material, greater catalyst stability is achieved, resulting in sustained overall performance. The introduced strategy provides an approach for fostering resilient hydrogenation catalysts upon exposure to reactive species often found in real-world point source CO2 emissions.

14.
Small ; 18(46): e2204603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135971

RESUMO

Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Eletrônica , Água
15.
ACS Appl Mater Interfaces ; 14(36): 40822-40833, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36036714

RESUMO

Hydrogen production through water electrolysis is a promising method to utilize renewable energy in the context of urgent need to phase out fossil fuels. Nickel-molybdenum (NiMo) electrodes are among the best performing non-noble metal-based electrodes for hydrogen evolution reaction in alkaline media (alkaline HER). Albeit exhibiting stable performance in electrolysis at a constant power supply (i.e., constant electrolysis), NiMo electrodes suffer from performance degradation in electrolysis at an intermittent power supply (i.e., intermittent electrolysis), which is emblematic of electrolysis powered directly by renewable energy (such as wind and solar power sources). Here we reveal that NiMo electrodes were oxidized by dissolved oxygen during power interruption, leading to vanishing of metallic Ni active sites and loss of conductivity in MoOx substrate. Based on the understanding of the degradation mechanism, chromium (Cr) coating was successfully applied as a protective layer to inhibit oxygen reduction reaction (ORR) and significantly enhance the stability of NiMo electrodes in intermittent electrolysis. Further, combining experimental and Molecular Dynamics (MD) simulations, we demonstrate that the Cr coating served as a physical barrier inhibiting diffusion of oxygen, while still allowing other species to pass through. Our work offers insights into electrode behavior in intermittent electrolysis, as well as provides Cr coating as a valid method and corresponding deep understanding of the factors for stability enhancement, paving the way for the successful application of lab-scale electrodes in industrial electrolysis powered directly by renewable energy.

16.
Sci Adv ; 8(34): eadc9961, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001665

RESUMO

Lithium (Li) metal anode have shown exceptional potential for high-energy batteries. However, practical cell-level energy density of Li metal batteries is usually limited by the low areal capacity (<3 mAh cm-2) because of the accelerated degradation of high-areal capacity Li metal anodes upon cycling. Here, we report the design of hyperbranched vertical arrays of defective graphene for enduring deep Li cycling at practical levels of areal capacity (>6 mAh cm-2). Such atomic-to-macroscopic trans-scale design is rationalized by quantifying the degradation dynamics of Li metal anodes. High-energy Li metal cells are prototyped under realistic conditions with high cathode capacity (>4 mAh cm-2), low negative-to-positive electrode capacity ratio (1:1), and low electrolyte-to-capacity ratio (5 g Ah-1), which shed light on a promising move toward practical Li metal batteries.

17.
Pest Manag Sci ; 78(11): 4569-4578, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35831266

RESUMO

BACKGROUND: Previous studies have found that pesticide double-stranded (ds)RNA usually has a long-lasting validity period in plants. However, it is uncertain if any factors in plants could extend dsRNA duration. It has been reported that RNA-dependent RNA polymerases (RdRP) in plants and some other eukaryotes could catalyze RNA amplification and be involved in RNAi (interference). Thus, this study evaluated the effect of RdRP on the tissue content, activity, and duration of exogenous dsRNA. RESULTS: We found that RdRP knockdown in Arabidopsis thaliana had no significant effect on tissue contents of reporter dsRNA parent molecules (8.91% reduction), but it caused significant decrease in the tissue contents of derived short fragments of 200, 120 and 59 bp tested (51.22%, 52.83% and 59.35%, respectively). Aphid inoculation tests showed that the same dose of insecticidal dsAgZFP exhibited a significantly lower lethal effect (mortality 58.8%) in the plants with RdRP knockdown than in the control plants with normal RdRP (86.0%). For Caenorhabditis elegans, the worms treated simultaneously with dsRdRP and reporter dsRNA had similar body contents to reporter dsRNA parent molecules and its long-fragment derivative (200 bp) as the control (1.28- and 1.07-fold greater, respectively). However, 120- and 59-bp short-fragment derivatives were significantly reduced by 28.78% and 59.84%, respectively, which also diminished faster in the descendants. CONCLUSIONS: We conclude that RdRP could significantly enhance the tissue content of dsRNA derivatives by catalyzing amplification, thus improving dsRNA activity and extending its lasting validity period. Otherwise, RNAi by exogenous dsRNA was proven to be noninheritable in A. thaliana. This work confirmed the merit of dsRNA as a plant protectant. © 2022 Society of Chemical Industry.


Assuntos
Arabidopsis , Praguicidas , Animais , Arabidopsis/genética , Caenorhabditis elegans/genética , RNA Polimerases Dirigidas por DNA/genética , Plantas/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA Polimerase Dependente de RNA/genética
18.
ACS Appl Mater Interfaces ; 14(27): 30857-30871, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35761422

RESUMO

The interface between structural electrodes and solid electrolytes plays a key role in the electrical-mechanical properties of energy storage structures. Herein, we present a surface functionalization method to improve the ion conduction efficiency at the interface between a structural electrode and a solid electrolyte that consists of a bi-continuous network of epoxy and ionic liquid (IL). Composite supercapacitors made with this electrolyte and carbon fiber (CF) electrodes coated with manganese dioxide (MnO2) demonstrate that treating the electrodes with the silane can increase the areal capacitance by 300% without degrading the tensile strength. The dual-phase electrolyte containing 40 wt % IL and 60 wt % epoxy exhibits the highest multifunctional performance, measured by the product of stiffness and ionic conductivity. The outstanding mechanical and energy storage properties demonstrate that the silane treatment of MnO2-coated CF fabric structural electrodes is a promising method for future high-performance structural composite supercapacitors.

19.
Nat Commun ; 13(1): 2430, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508501

RESUMO

Platinum is the most efficient catalyst for hydrogen evolution reaction in acidic conditions, but its widespread use has been impeded by scarcity and high cost. Herein, Pt atomic clusters (Pt ACs) containing Pt-O-Pt units were prepared using Co/N co-doped carbon (CoNC) as support. Pt ACs are anchored to single Co atoms on CoNC by forming strong interactions. Pt-ACs/CoNC exhibits only 24 mV overpotential at 10 mA cm-2 and a high mass activity of 28.6 A mg-1 at 50 mV, which is more than 6 times higher than commercial Pt/C with any Pt loadings. Spectroscopic measurements and computational modeling reveal the enhanced hydrogen generation activity attributes to the charge redistribution between Pt and O atoms in Pt-O-Pt units, making Pt atoms the main active sites and O linkers the assistants, thus optimizing the proton adsorption and hydrogen desorption. This work opens an avenue to fabricate noble-metal-based ACs stabilized by single-atom catalysts with desired properties for electrocatalysis.

20.
Pestic Biochem Physiol ; 183: 105088, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430059

RESUMO

The bird-cherry-oat aphid, Rhopalosiphum padi, is a serious agricultural pest of Triticeae crops, and pyrethroids are the most widely used chemical pesticides for the control of the aphid. Our previous studies found that some R. padi field populations have developed resistance against pyrethroids; an M918L target-site mutation of the voltage gated sodium channel was present in the pyrethroid resistant individuals, while the high-level resistance to lambda-cyhalothrin revealed the presence of other mechanisms in the pest. Here, we conducted genome-wide transcriptional analysis for the lambda-cyhalothrin susceptible (SS) and resistant (LC-RR) strains of R. padi. Results indicated that 2457 genes were differently expressed between the SS and LC-RR strains. In the LC-RR, a total of 1265 and 1192 genes were up- and down-regulated, respectively. KEGG analysis implicated enrichment of P450 involved in insecticide metabolic pathways in the resistant transcriptome. qRT-PCR results confirmed that two P450 genes (CYP6DC1 and CYP380C47) were significantly overexpressed in the LC-RR individuals. Furthermore, RNA interference (RNAi) of CYP6DC1 or CYP380C47 significantly increased mortality of R. padi exposure to lambda-cyhalothrin. These results suggest that the overexpression of CYP6DC1 and CYP380C47 contributed to the lambda-cyhalothrin resistance in the pest. This study provides knowledge for further analyzing the molecular mechanism of resistance to pyrethroids in R. padi.


Assuntos
Afídeos , Inseticidas , Piretrinas , Animais , Afídeos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Nitrilas , Piretrinas/farmacologia , Interferência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...